3.1068 \(\int \frac{1}{x^{3/2} \left (a+b x^2+c x^4\right )} \, dx\)

Optimal. Leaf size=371 \[ -\frac{\sqrt [4]{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} a \sqrt [4]{-\sqrt{b^2-4 a c}-b}}-\frac{\sqrt [4]{c} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} a \sqrt [4]{\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} a \sqrt [4]{-\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} a \sqrt [4]{\sqrt{b^2-4 a c}-b}}-\frac{2}{a \sqrt{x}} \]

[Out]

-2/(a*Sqrt[x]) - (c^(1/4)*(1 - b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt
[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(1/4))
 - (c^(1/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqr
t[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*a*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) + (c^(1/4)*(1
 - b/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c
])^(1/4)])/(2^(3/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) + (c^(1/4)*(1 + b/Sqrt[b^2
 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2
^(3/4)*a*(-b + Sqrt[b^2 - 4*a*c])^(1/4))

_______________________________________________________________________________________

Rubi [A]  time = 1.02573, antiderivative size = 371, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3 \[ -\frac{\sqrt [4]{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} a \sqrt [4]{-\sqrt{b^2-4 a c}-b}}-\frac{\sqrt [4]{c} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} a \sqrt [4]{\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} a \sqrt [4]{-\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \left (\frac{b}{\sqrt{b^2-4 a c}}+1\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} a \sqrt [4]{\sqrt{b^2-4 a c}-b}}-\frac{2}{a \sqrt{x}} \]

Antiderivative was successfully verified.

[In]  Int[1/(x^(3/2)*(a + b*x^2 + c*x^4)),x]

[Out]

-2/(a*Sqrt[x]) - (c^(1/4)*(1 - b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt
[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(1/4))
 - (c^(1/4)*(1 + b/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqr
t[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*a*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) + (c^(1/4)*(1
 - b/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c
])^(1/4)])/(2^(3/4)*a*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) + (c^(1/4)*(1 + b/Sqrt[b^2
 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2
^(3/4)*a*(-b + Sqrt[b^2 - 4*a*c])^(1/4))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 147.074, size = 374, normalized size = 1.01 \[ - \frac{\sqrt [4]{2} \sqrt [4]{c} \left (b + \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atan}{\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{- b + \sqrt{- 4 a c + b^{2}}}} \right )}}{2 a \sqrt [4]{- b + \sqrt{- 4 a c + b^{2}}} \sqrt{- 4 a c + b^{2}}} + \frac{\sqrt [4]{2} \sqrt [4]{c} \left (b + \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atanh}{\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{- b + \sqrt{- 4 a c + b^{2}}}} \right )}}{2 a \sqrt [4]{- b + \sqrt{- 4 a c + b^{2}}} \sqrt{- 4 a c + b^{2}}} + \frac{\sqrt [4]{2} \sqrt [4]{c} \left (b - \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atan}{\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{- b - \sqrt{- 4 a c + b^{2}}}} \right )}}{2 a \sqrt [4]{- b - \sqrt{- 4 a c + b^{2}}} \sqrt{- 4 a c + b^{2}}} - \frac{\sqrt [4]{2} \sqrt [4]{c} \left (b - \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atanh}{\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{- b - \sqrt{- 4 a c + b^{2}}}} \right )}}{2 a \sqrt [4]{- b - \sqrt{- 4 a c + b^{2}}} \sqrt{- 4 a c + b^{2}}} - \frac{2}{a \sqrt{x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/x**(3/2)/(c*x**4+b*x**2+a),x)

[Out]

-2**(1/4)*c**(1/4)*(b + sqrt(-4*a*c + b**2))*atan(2**(1/4)*c**(1/4)*sqrt(x)/(-b
+ sqrt(-4*a*c + b**2))**(1/4))/(2*a*(-b + sqrt(-4*a*c + b**2))**(1/4)*sqrt(-4*a*
c + b**2)) + 2**(1/4)*c**(1/4)*(b + sqrt(-4*a*c + b**2))*atanh(2**(1/4)*c**(1/4)
*sqrt(x)/(-b + sqrt(-4*a*c + b**2))**(1/4))/(2*a*(-b + sqrt(-4*a*c + b**2))**(1/
4)*sqrt(-4*a*c + b**2)) + 2**(1/4)*c**(1/4)*(b - sqrt(-4*a*c + b**2))*atan(2**(1
/4)*c**(1/4)*sqrt(x)/(-b - sqrt(-4*a*c + b**2))**(1/4))/(2*a*(-b - sqrt(-4*a*c +
 b**2))**(1/4)*sqrt(-4*a*c + b**2)) - 2**(1/4)*c**(1/4)*(b - sqrt(-4*a*c + b**2)
)*atanh(2**(1/4)*c**(1/4)*sqrt(x)/(-b - sqrt(-4*a*c + b**2))**(1/4))/(2*a*(-b -
sqrt(-4*a*c + b**2))**(1/4)*sqrt(-4*a*c + b**2)) - 2/(a*sqrt(x))

_______________________________________________________________________________________

Mathematica [C]  time = 0.0646622, size = 78, normalized size = 0.21 \[ -\frac{\text{RootSum}\left [\text{$\#$1}^8 c+\text{$\#$1}^4 b+a\&,\frac{\text{$\#$1}^4 c \log \left (\sqrt{x}-\text{$\#$1}\right )+b \log \left (\sqrt{x}-\text{$\#$1}\right )}{2 \text{$\#$1}^5 c+\text{$\#$1} b}\&\right ]+\frac{4}{\sqrt{x}}}{2 a} \]

Antiderivative was successfully verified.

[In]  Integrate[1/(x^(3/2)*(a + b*x^2 + c*x^4)),x]

[Out]

-(4/Sqrt[x] + RootSum[a + b*#1^4 + c*#1^8 & , (b*Log[Sqrt[x] - #1] + c*Log[Sqrt[
x] - #1]*#1^4)/(b*#1 + 2*c*#1^5) & ])/(2*a)

_______________________________________________________________________________________

Maple [C]  time = 0.015, size = 65, normalized size = 0.2 \[ -{\frac{1}{2\,a}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{{{\it \_R}}^{6}c+{{\it \_R}}^{2}b}{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}\ln \left ( \sqrt{x}-{\it \_R} \right ) }}-2\,{\frac{1}{a\sqrt{x}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/x^(3/2)/(c*x^4+b*x^2+a),x)

[Out]

-1/2/a*sum((_R^6*c+_R^2*b)/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^
4*b+a))-2/a/x^(1/2)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ -\frac{2}{a \sqrt{x}} - \int \frac{c x^{\frac{5}{2}} + b \sqrt{x}}{a c x^{4} + a b x^{2} + a^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*x^4 + b*x^2 + a)*x^(3/2)),x, algorithm="maxima")

[Out]

-2/(a*sqrt(x)) - integrate((c*x^(5/2) + b*sqrt(x))/(a*c*x^4 + a*b*x^2 + a^2), x)

_______________________________________________________________________________________

Fricas [A]  time = 1.10767, size = 7055, normalized size = 19.02 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*x^4 + b*x^2 + a)*x^(3/2)),x, algorithm="fricas")

[Out]

1/2*(4*a*sqrt(x)*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4
- 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c
^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*
b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*arctan(1/2*sqrt(1/2)*(b^11 - 13*a*b^9*c + 63*a
^2*b^7*c^2 - 138*a^3*b^5*c^3 + 128*a^4*b^3*c^4 - 32*a^5*b*c^5 - (a^5*b^10 - 16*a
^6*b^8*c + 98*a^7*b^6*c^2 - 280*a^8*b^4*c^3 + 352*a^9*b^2*c^4 - 128*a^10*c^5)*sq
rt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a
^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3
*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c +
11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^
2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*sqrt(-(b^5 - 5*a*b
^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c
+ 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*
b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2))/((b^4*c^4 - 3*a*b
^2*c^5 + a^2*c^6)*sqrt(x) + sqrt((b^8*c^8 - 6*a*b^6*c^9 + 11*a^2*b^4*c^10 - 6*a^
3*b^2*c^11 + a^4*c^12)*x - 1/2*sqrt(1/2)*(b^13*c^5 - 13*a*b^11*c^6 + 65*a^2*b^9*
c^7 - 155*a^3*b^7*c^8 + 175*a^4*b^5*c^9 - 79*a^5*b^3*c^10 + 12*a^6*b*c^11 - (a^5
*b^12*c^5 - 16*a^6*b^10*c^6 + 100*a^7*b^8*c^7 - 305*a^8*b^6*c^8 + 460*a^9*b^4*c^
9 - 304*a^10*b^2*c^10 + 64*a^11*c^11)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6
*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^
3)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)
*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 1
2*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*
c^2))))) - 4*a*sqrt(x)*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^
5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3
*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))
/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*arctan(-1/2*sqrt(1/2)*(b^11 - 13*a*b^9*c
 + 63*a^2*b^7*c^2 - 138*a^3*b^5*c^3 + 128*a^4*b^3*c^4 - 32*a^5*b*c^5 + (a^5*b^10
 - 16*a^6*b^8*c + 98*a^7*b^6*c^2 - 280*a^8*b^4*c^3 + 352*a^9*b^2*c^4 - 128*a^10*
c^5)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6
 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^5 -
5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b
^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*
a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*sqrt(-(b^5
- 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a
*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 4
8*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2))/((b^4*c^4
- 3*a*b^2*c^5 + a^2*c^6)*sqrt(x) + sqrt((b^8*c^8 - 6*a*b^6*c^9 + 11*a^2*b^4*c^10
 - 6*a^3*b^2*c^11 + a^4*c^12)*x - 1/2*sqrt(1/2)*(b^13*c^5 - 13*a*b^11*c^6 + 65*a
^2*b^9*c^7 - 155*a^3*b^7*c^8 + 175*a^4*b^5*c^9 - 79*a^5*b^3*c^10 + 12*a^6*b*c^11
 + (a^5*b^12*c^5 - 16*a^6*b^10*c^6 + 100*a^7*b^8*c^7 - 305*a^8*b^6*c^8 + 460*a^9
*b^4*c^9 - 304*a^10*b^2*c^10 + 64*a^11*c^11)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*
c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*
a^13*c^3)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c + 16*a
^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*
b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c +
16*a^7*c^2))))) + a*sqrt(x)*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2
+ (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 -
6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c
^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*log(1/2*sqrt(1/2)*(b^11 - 13*a*b^9*
c + 63*a^2*b^7*c^2 - 138*a^3*b^5*c^3 + 128*a^4*b^3*c^4 - 32*a^5*b*c^5 - (a^5*b^1
0 - 16*a^6*b^8*c + 98*a^7*b^6*c^2 - 280*a^8*b^4*c^3 + 352*a^9*b^2*c^4 - 128*a^10
*c^5)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^
6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^5 -
 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*
b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48
*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*sqrt(-(b^5
 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*
a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c +
48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)) + (b^4*c^
4 - 3*a*b^2*c^5 + a^2*c^6)*sqrt(x)) - a*sqrt(x)*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*
b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c
 + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12
*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*log(-1/2*sqrt(1
/2)*(b^11 - 13*a*b^9*c + 63*a^2*b^7*c^2 - 138*a^3*b^5*c^3 + 128*a^4*b^3*c^4 - 32
*a^5*b*c^5 - (a^5*b^10 - 16*a^6*b^8*c + 98*a^7*b^6*c^2 - 280*a^8*b^4*c^3 + 352*a
^9*b^2*c^4 - 128*a^10*c^5)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^
3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))*sqrt(s
qrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*
c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6
 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*
a^7*c^2)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^4 - 8*a^6*b^2*c + 16*a^
7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b
^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 1
6*a^7*c^2)) + (b^4*c^4 - 3*a*b^2*c^5 + a^2*c^6)*sqrt(x)) + a*sqrt(x)*sqrt(sqrt(1
/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*
sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12
*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c
^2)))*log(1/2*sqrt(1/2)*(b^11 - 13*a*b^9*c + 63*a^2*b^7*c^2 - 138*a^3*b^5*c^3 +
128*a^4*b^3*c^4 - 32*a^5*b*c^5 + (a^5*b^10 - 16*a^6*b^8*c + 98*a^7*b^6*c^2 - 280
*a^8*b^4*c^3 + 352*a^9*b^2*c^4 - 128*a^10*c^5)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^
4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 6
4*a^13*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4 - 8
*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3
+ a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4
 - 8*a^6*b^2*c + 16*a^7*c^2)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4 -
 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^
3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b
^4 - 8*a^6*b^2*c + 16*a^7*c^2)) + (b^4*c^4 - 3*a*b^2*c^5 + a^2*c^6)*sqrt(x)) - a
*sqrt(x)*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^4 - 8*a^6*
b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4
*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64*a^13*c^3)))/(a^5*b^4 - 8*
a^6*b^2*c + 16*a^7*c^2)))*log(-1/2*sqrt(1/2)*(b^11 - 13*a*b^9*c + 63*a^2*b^7*c^2
 - 138*a^3*b^5*c^3 + 128*a^4*b^3*c^4 - 32*a^5*b*c^5 + (a^5*b^10 - 16*a^6*b^8*c +
 98*a^7*b^6*c^2 - 280*a^8*b^4*c^3 + 352*a^9*b^2*c^4 - 128*a^10*c^5)*sqrt((b^8 -
6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c
+ 48*a^12*b^2*c^2 - 64*a^13*c^3)))*sqrt(sqrt(1/2)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2
*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4
*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 - 64
*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a
^2*b*c^2 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b
^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^6 - 12*a^11*b^4*c + 48*a^12*b^2*c^2 -
64*a^13*c^3)))/(a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)) + (b^4*c^4 - 3*a*b^2*c^5 +
a^2*c^6)*sqrt(x)) - 4)/(a*sqrt(x))

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/x**(3/2)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{{\left (c x^{4} + b x^{2} + a\right )} x^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*x^4 + b*x^2 + a)*x^(3/2)),x, algorithm="giac")

[Out]

integrate(1/((c*x^4 + b*x^2 + a)*x^(3/2)), x)